Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames

نویسندگان

  • G. Kavian Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • M. S. Asgari Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده مقاله:

In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

expansion of bessel and g-bessel sequences to dual frames and dual g-frames

in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.

متن کامل

Duality of $g$-Bessel sequences and some results about RIP $g$-‎frames

‎In this paper‎, ‎first we develop the duality concept for $g$-Bessel sequences‎ ‎and Bessel fusion sequences in Hilbert spaces‎. ‎We obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎We also expand every $g$-Bessel ‎sequence to a frame by summing some elements‎. ‎We define the restricted isometry property for ‎$g$-frames and generalize some resu...

متن کامل

Bessel Subfusion Sequences and Subfusion Frames

Fusion frames are a generalized form of frames in Hilbert spaces. In the present paper we introduce Bessel subfusion sequences and subfusion frames and we investigate the relationship between their operation. Also, the definition of the orthogonal complement of subfusion frames and the definition of the completion of Bessel fusion sequences are provided and several results related with these no...

متن کامل

duality of $g$-bessel sequences and some results about rip $g$-‎frames

‎in this paper‎, ‎first we develop the duality concept for $g$-bessel sequences‎ ‎and bessel fusion sequences in hilbert spaces‎. ‎we obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎we also expand every $g$-bessel ‎sequence to a frame by summing some elements‎. ‎we define the restricted isometry property for ‎$g$-frames and generalize some resu...

متن کامل

$G$-dual Frames in Hilbert $C^{*}$-module Spaces

In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames  are given.  A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...

متن کامل

G-dual function-valued frames in L2(0,∞)

In this paper, g-dual function-valued frames in L2(0;1) are in- troduced. We can achieve more reconstruction formulas to ob- tain signals in L2(0;1) by applying g-dual function-valued frames in L2(0;1).

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 02  شماره 01

صفحات  51- 57

تاریخ انتشار 2013-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023